
P O D C 2 0 0 4

The PODC Steering Committee is pleased to announce that PODC 2004 will be held in St. John's,
Newfoundland. This will be the thirteenth PODC to be held in Canada but the first to be held
there since 1995. Many thanks to K r i s h n a m u r t h y V i d y a s a n k a r , Professor at the Memorial
University of Newfoundland, who will serve as Local Arrangements Chair. The General Chair will
Soma Chaudhuri.

P O D C 2 0 0 5

There has been a tentative offer to host PODC 2005 in Europe. Given that PODC has always been
sited in North America, the possibility of holding the conference elsewhere will be discussed at the
Business Meeting of PODC 2002.

Brewer's Conjecture and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services

S e t h G i l b e r t a n d N a n c y L y n c h
L a b o r a t o r y for C o m p u t e r S c i e n c e

M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y
C a m b r i d g e , M A 0 2 1 3 9

sethg©mit, edu, lynch©theory. Ics. mit. edu

Abstract

When designing distributed web services, there are three properties that are commonly
desired: consistency, availability, and partition tolerance. It is impossible to achieve all
three. In this note, we prove this conjecture in the asynchronous network model, and
then discuss solutions to this dilemma in the partially synchronous model.

1 Introduct ion

At PODC 2000, Brewer 1, in an invited talk [2], made the following conjecture: it is impossible for
a web service to provide the following three guarantees:

• Consistency

• Availability

• Partition-tolerance

All three of these properties are desirable - and expected - from real-world web services. In
this note, we will first discuss what Brewer meant by the conjecture; next we will formalize these
concepts and prove the conjecture; finally, we will describe and at tempt to formalize some real-world
solutions to this practical difficulty.

~Eric Brewer is a professor at the University of California, Berkeley, and the co-founder and Chief Scientist of
Inktomi.

51

http://crossmark.crossref.org/dialog/?doi=10.1145%2F564585.564601&domain=pdf&date_stamp=2002-06-01

Mos t web services t o d a y a t t e m p t to p rov ide s t r o n g l y cons i s t en t da t a . T h e r e has b e e n s ign i f ican t
r e sea rch de s ign ing A C I D 2 d a t a b a s e s , a n d m o s t o f t he new f r a m e w o r k s for b u i l d i n g d i s t r i b u t e d web
services d e p e n d on these da t abases . I n t e r a c t i o n s w i t h web services a re e x p e c t e d to b e h a v e in
a t r a n s a c t i o n a l m a n n e r : o p e r a t i o n s c o m m i t or fail in the i r e n t i r e t y (a tomic) , t r a n s a c t i o n s never
obse rve or r e su l t in i n c o n s i s t e n t d a t a (cons i s t en t) , u n c o m m i t t e d t r a n s a c t i o n s are i so l a t ed f r o m
each o t h e r (i so la ted) , a n d once a t r a n s a c t i o n is c o m m i t t e d it is p e r m a n e n t (du rab l e) . I t is c lear ly
i m p o r t a n t , for e x a m p l e , t h a t b i l l ing i n f o r m a t i o n a n d c o m m e r c i a l t r a n s a c t i o n r eco rds be h a n d l e d
w i t h th i s t y p e of s t r o n g cons is tency .

Web services are s imi la r ly e x p e c t e d to be h igh ly avai lable . Eve ry r e q u e s t s h o u l d s u c c e e d a n d
receive a r e sponse . W h e n a service goes down, it m a y well c r ea t e s igni f icant r ea l -wor ld p r o b l e m s ;
t h e classic e x a m p l e of th is is t he p o t e n t i a l legal diff icul t ies s h o u l d t h e E - T r a d e web s i te go d o w n .
T h i s p r o b l e m is e x a c e r b a t e d by t he fact t h a t a web-s i t e is m o s t l ikely to be u n a v a i l a b l e w h e n it is
m o s t nee de d . T h e goal o f m o s t web services t o d a y is to be as ava i lab le as t h e n e t w o r k o n w h i c h
t h e y run : if a n y service on t he n e t w o r k is avai lable , t h e n t h e web serv ice s h o u l d be access ib le .

F ina l ly , on a h i g h l y d i s t r i b u t e d ne twork , it is des i r ab le to p r o v i d e s o m e a m o u n t o f faul t -
to le rance . W h e n s o m e n o d e s c r a sh or s o m e c o m m u n i c a t i o n l inks fail, i t is i m p o r t a n t t h a t t h e
serv ice st i l l p e r f o r m as expec t ed . O n e des i rab le fau l t t o l e r ance p r o p e r t y is t h e ab i l i ty to su rv i ve
a n e t w o r k p a r t i t i o n i n g in to m u l t i p l e c o m p o n e n t s . I n th i s n o t e we wil l n o t c o n s i d e r s t o p p i n g fail-
ures , t h o u g h in s o m e cases a s t o p p i n g fa i lure can be m o d e l e d as a n o d e ex i s t i ng in i t s o w n u n i q u e
c o m p o n e n t of a p a r t i t i o n .

2 F o r m a l M o d e l

In th i s sec t ion , we will f o rma l ly def ine w h a t is m e a n t by t h e t e r m s consistent, available, a n d partition
tolerant.

2.1 A t o m i c D a t a O b j e c t s

T h e m o s t n a t u r a l way o f fo rma l i z ing t he idea of a cons i s t en t service is as a n a t o m i c d a t a ob j ec t .
A t o m i c [4], or l inea r i zab le [3], cons i s t ency is t he c o n d i t i o n e x p e c t e d by m o s t web serv ices today . 3
U n d e r th i s c o n s i s t e n c y g u a r a n t e e , t h e r e m u s t exis t a t o t a l o r d e r on all o p e r a t i o n s s u c h t h a t each
o p e r a t i o n looks as if it were c o m p l e t e d at a s ingle i n s t an t . T h i s is equ iva l en t to r e q u i r i n g r e q u e s t s
of t h e d i s t r i b u t e d s h a r e d m e m o r y to ac t as if t h e y were e x e c u t i n g o n a s ingle n o d e , r e s p o n d i n g
to o p e r a t i o n s one a t a t ime . T h i s is t h e cons i s t ency g u a r a n t e e t h a t gene ra l ly p r o v i d e s t h e eas ies t
m o d e l for users to u n d e r s t a n d , a n d is m o s t conven i en t for t hose a t t e m p t i n g to d e s i g n a c l ient
a p p l i c a t i o n t h a t uses t h e d i s t r i b u t e d service. See C h a p t e r 13 of [5] for a m o r e c o m p l e t e d e f i n i t i o n
of a t o m i c cons i s t ency .

~Atomic , Cons is ten t , Isolated, D u r a b l e
3Discussing a tomic consis tency is somewha t different t han ta lking abou t an ACID da tabase , as da t ab ase consis-

tency refers to t ransact ions , while a tomic consis tency refers only to a p rope r ty of a single r eques t / r e sponse opera t ion
sequence. And it has a different meaning than the A t o m i c in ACID, as it subsumes the da t abase not ions of b o t h
A t o m i c and Cons is ten t .

52

2.2 A v a i l a b l e D a t a O b j e c t s

For a distributed system to be continuously available, every request received by a non-failing node
in the system must result in a response. 4 That is, any algorithm used by the service must eventually
terminate. In some ways this is a weak definition of availability: it puts no bound on how long the
algorithm may run before terminating, and therefore allows unbounded computation. On the other
hand, when qualified by the need for partition tolerance, this can be seen as a strong definition of
availability: even when severe network failures occur, every request must terminate.

2.3 P a r t i t i o n T o l e r a n c e

The above definitions of availability and atomicity are qualified by the need to tolerate partitions.
In order to model partit ion tolerance, the network will be allowed to lose arbitrarily many messages
sent from one node to another. When a network is partitioned, all messages sent from nodes in one
component of the partition to nodes in another component are lost. (And any pat tern of message
loss can be modeled as a temporary partition separating the communicating nodes at the exact
inst ant the message is lost.) The atomicity requirement (§2.1) therefore implies t hat every response
will be atomic, even though arbitrary messages sent as part of the algorithm might not be delivered.
The availability requirement (§2.2) implies that every node receiving a request from a client must
respond, even though arbitrary messages that are sent may be lost. Note that this is similar to
wait-free termination in a pure shared-memory system: even if every other node in the network
fails (i.e. the node is in its own unique component of the partition), a valid (atomic) response must
be generated. No set of failures less than total network failure is allowed to cause the system to
respond incorrectly. 5

3 A s y n c h r o n o u s Networks

3.1 I m p o s s i b i l i t y R e s u l t

In proving this conjecture, we will use the asynchronous network model, as formalized by Lynch
in Chapter 8 of [5]. In the asynchronous model, there is no clock, and nodes must make decisions
based only on the messages received and local computation.

T h e o r e m 1 It is impossible in the asynchronous network model to implement a read/write data
object that guarantees the following properties:

• Availability

• Atomic consistency

in all fair executions (including those in which messages are lost).

Proof: We prove this by contradiction. Assume an algorithm A exists that meets the three criteria:
atomicity, availability, and partition tolerance. We construct an execution of A in which there exists
a request that returns an inconsistent response. The methodology is similar to proofs in Attiya

4Brewer originally only required almost all requests to receive a response. As allowing probabilistic availability
does not change the result when arbitrary failures occur, for simplicity we axe requiring 100% availability.

5Brewer pointed out in the talk that partitions of one node are irrelevant: they are equivalent to that node failing.
However restricting our attention to partitions containing only components of size greater than one does not change
any of the results in this note.

53

et al. [1] and L y n c h [5] (T h e o r e m 17.6). Assume tha t the ne twork consists of at least two nodes .
T h u s it can be d iv ided into two disjoint , n o n - e m p t y sets: {G1, G2}. T h e basic idea of t he p roof is
to a s sume tha t all messages be tween G1 and G2 are lost. If a write occurs in G1, and la te r a read
occurs in G2, t h e n the read ope ra t i on canno t r e t u r n the resul ts of the ear l ier write opera t ion .

More formally, let v0 be the ini t ia l value of the a tomic objec t . Let c~1 be t he prefix of an
execu t ion of A in which a single write of a value not equa l to v0 occurs in G1, e n d i n g w i th t he
t e r m i n a t i o n of the write opera t ion . Assume t h a t no o the r cl ient reques t s occur in e i the r G1 or
G2. Fu r the r , a s sume t h a t no messages f rom G1 are received in G2, a n d no messages f rom G2 are
received in G1. We know t h a t th is write completes , by the avai labi l i ty r equ i r emen t . Similar ly, let
a2 be t he prefix of an execu t ion in which a single read occurs in G2, a n d no o the r cl ient reques t s
occur , end ing w i t h the t e r m i n a t i o n of the read opera t ion . D u r i n g c~2 no messages f rom G2 are
received in G1, and no messages f rom G1 are received in G2. Aga in we know t h a t t he read r e t u r n s
a value by the avai labi l i ty r equ i rement . T h e value r e t u r n e d by this execu t i on m u s t be v0, as no
write o p e r a t i o n has occu r r ed in c~2.

Let c~ be an execu t ion beg inn ing w i t h a l and con t inu ing w i th c~2. To the nodes in G2, c~ is
i nd i s t ingu i shab le f rom c~2, as all the messages f rom G1 to G2 axe lost (in b o t h a l a n d a2, w h i c h
toge the r m a k e up a) , and a l does not inc lude any client reques ts to nodes in G2. The re fo re in
the c~ execut ion , the read reques t (from c~2) mus t stil l r e t u r n v0. However t he read reques t does
no t beg in unt i l af ter t he write reques t (from ~1) has comple ted . This therefore con t r ad i c t s t he
a tomic i ty proper ty , p roving t h a t no such a lgo r i t hm exists. •

C o r o l l a r y 1.1 It is impossible in the asynchronous network model to implement a read/write data
object that guarantees the following properties:

• Availability, in all fair executions,

• Atomic consistency, in fair executions in which no messages are lost.

Proof: T h e m a i n idea is t h a t in the a synchronous m o d e l an a lgo r i t hm has no way of d e t e r m i n i n g
w h e t h e r a message has been lost, or has been a rb i t r a r i ly de layed in t he t r an smi s s ion channe l .
There fo re if t he re exis ted an a lgo r i t hm tha t g u a r a n t e e d a tomic cons is tency in execu t ions in w h i c h
no messages were lost, t hen the re would exist an a lgo r i t hm tha t g u a r a n t e e d a t o m i c cons i s t ency in
all execut ions . Th i s would v io la te T h e o r e m 1.

More formally, a s sume for the sake of con t rad ic t ion t h a t t he re exists an a l g o r i t h m A t h a t a lways
t e rmina te s , and gua ran tees a tomic cons is tency in fair execut ions in which all messages a re del ivered.
Fur the r , T h e o r e m 1 implies t ha t A does not gua ran t ee a tomic cons i s tency in all fair execut ions , so
the re exists some fair execu t ion v~ of A in which some response is no t a tomic .

At some finite po in t in execu t ion ~, the a lgo r i t hm A re tu rns a response t h a t is no t a tomic . Let
c~ ~ be the prefix of a end ing w i t h the inval id response. Next , e x t e n d (~' to a fair execu t ion ~'~, in
wh ich all messages are del ivered. T h e execu t ion c~ ~ is now a fair execu t ion in wh ich all messages
are del ivered. However this execu t ion is not a tomic . Therefore no such a l g o r i t h m A exists. •

3.2 S o l u t i o n s in t h e A s y n c h r o n o u s M o d e l

W h i l e it is imposs ib le to provide all th ree proper t ies : a tomici ty , availabil i ty, a n d p a r t i t i o n to le rance ,
any two of these th ree p roper t i e s can be achieved.

54

3.2.1 Atomic , Part i t ion Tolerant

If availability is not required~ then it is easy to achieve a tomic da t a and par t i t ion tolerance. T h e
tr ivial system tha t ignores all requests meets these requirements . However we can provide a s t ronger
liveness criterion: if all the messages in an execut ion are delivered, the sys tem is available and all
opera t ions te rminate . A simple central ized a lgor i thm meets these requirements: a single des ignated
node main ta ins the value of an object. A node receiving a request forwards the request to the
des ignated node, which sends a response. W h e n an acknowledgment is received, the node sends a
response to the client.

Many d is t r ibuted databases provide this type of guarantee, especially a lgor i thms based on
d is t r ibu ted locking or quorums: if cer ta in failure pa t te rns occur, then the liveness condi t ion is
weakened and the service no longer re turns responses. If there are no failures, then liveness is
guaranteed .

3.2.2 Atomic, Available

If there are no part i t ions, it is clearly possible to provide atomic, available data . In fact, the
central ized a lgor i thm descr ibed in Section 3.2.1 meets these requirements . Systems t ha t run on
in t ranets and LANs are an example of these types of algori thms.

3.2.3 Available, Part i t ion Tolerant

It is possible to provide high availability and par t i t ion tolerance, if a tomic consis tency is not
required. If there are no consistency requirements , the service can tr ivially r e tu rn v0, the init ial
value, in response to every request. However it is possible to provide weakened consis tency in an
available, par t i t ion tolerant setting. Web caches are one example of a weakly consistent network.
In Section 4.4 we consider one of the possible weaker consistency condit ions.

4 Partially Synchronous Networks

4.1 P a r t i a l l y S y n c h r o n o u s M o d e l

The most obvious way to try to circumvent the impossibil i ty result of Theorem 1 is to realize tha t
in the real world, most networks are not purely asynchronous. If you allow each node in the network
to have a clock, it is possible to build a more powerful service.

For the rest of this paper, we will assume a par t ia l ly synchronous model in which every node
has a clock, and all clocks increase at the same rate. However, the clocks themselves are not
synchronized, in tha t they may display different values at the same real t ime. In effect, the clocks
act as t imers: local s tate variables tha t the processes can observe to measure how much t ime has
passed. A local t imer can be used to schedule an act ion to occur a cer ta in interval of t ime after
some other event. Fur thermore , assume tha t every message is either delivered wi th in a given, known
time: tmsg , o r it is lost. Also, every node processes a received message wi th in a given, known t ime:
tlocal, and local processing takes zero time. This can be formalized as a special case of the Genera l
T imed A u t o m a t a model described by Lynch in Chapter 23 of [5].

4 . 2 I m p o s s i b i l i t y R e s u l t

It is still impossible to have an always available, a tomic da t a object when a rb i t r a ry messages may
be lost, even in the par t ia l ly synchronous model. Tha t is, the following analogue of T h e o r e m I

55

holds:

T h e o r e m 2 It is impossible in the partially synchronous network model to implement a read/write
data object that guarantees the following properties:

• Availability

• Atomic consistency

in all executions (even those in which messages are lost).

Proof: This proof is rather similar to the proof of Theorem 1. We will follow the same methodology:
divide the network into two components, (Gi~ G2}, and construct an admissable execution in which
a write happens in one component , followed by a read operat ion in the other component . This read
operat ion can be shown to re turn inconsistent data.

More formally, construct execution ~1 as before in Theorem 1: a single write request and
acknowledgment occur in G1, and all messages between the two components , (G1, G2}, are lost.
We will construct the second execution, ~ , slightly differently. Let c~ S be an execution tha t begins
wi th a long interval of t ime during which no client requests occur. This interval must be at least
as long as the entire durat ion of cq. Then append to a S the events of o~2, as defined above in
Theorem 1: a single read request and response in G2, again assuming all messages between the two
components are lost. Finally, construct c~ by superimposing the two executions a l and a S. The
long interval of t ime in ~2 ensures that the write request completes before the read request begins.
However, as in Theorem 1, the read request returns the initial value, ra ther than the new value
wri t ten by the write request, violating atomic consistency. •

4 .3 S o l u t i o n s in the Part ia l ly S y n c h r o n o u s M o d e l

In the partially synchronous model, however, the analogue of Corollary 1.1 does not hold. The
proof of this corollary does in fact depend on nodes being unaware of when a message is lost. There
are partially synchronous algori thms that will re turn atomic da ta when all messages in an execution
are delivered (i.e., there are no partitions), and will only re turn inconsistent (and, in particular,
stale) data when messages are lost. One example of such an algori thm is the centralized protocol
described in Section 3.2.1, modified to t ime-out lost messages. On a read (or write) request, a
message is sent to the central node. If a response from the central node is received, then the node
delivers the requested data (or an acknowledgment). If no response is received wi th in 2*tmsg "-btiocal,
then the node concludes that the message was lost. The client is then sent a response: ei ther the
best known value of the local node (for a read operation), or an acknowledgment (for a write
operation). In this case, atomic consistency may be violated.

4.4 Weaker C o n s i s t e n c y C o n d i t i o n s

While it is useful to guarantee that atomic data will be re turned in executions in which all mes-
sages are delivered (within some time bound), it is equally impor tant to specify what happens in
executions in which some of the messages are lost. In this section, we will discuss one possible
weaker consistency condit ion that allows stale data to be re turned when there are part i t ions, yet
still place formal requirements on the quality of the stale data returned. This consistency guarantee
will require availability and atomic consistency in executions in which no messages are lost, and is
therefore impossible to guarantee in the asynchronous model as a result of Corollary 1.1.

56

In the par t i a l ly synchronous m o d e l it o f ten makes sense to base gua ran t ee s on how long an
a l g o r i t h m has had to rect ify a s i tua t ion . Th i s cons i s tency m o d e l ensures t h a t if messages are
del ivered, t h e n even tua l ly some no t ion of a tomic i ty is res tored.

In an a tomic execut ion , we would define a par t i a l o rder of t he read and write ope ra t ions , a n d
t h e n require t h a t if one ope ra t i on begins after ano the r one ends , t he fo rmer does no t p recede
the l a t t e r in the pa r t i a l order . We will define a weaker guaran tee , t - C o n n e c t e d Cons is tency , which
defines a pa r t i a l o rder in a s imilar m a n n e r , bu t only requires t h a t one o p e r a t i o n no t p recede a n o t h e r
if t he re is an interval be tween the ope ra t ions in which all messages axe del ivered.

D e f i n i t i o n 3 A timed execution, a, of a read-write object is t - C o n n e c t e d Cons i s t en t if two criteria
hold. First, in executions in which no messages are lost, the execution is atomic. Second, in
executions in which messages are lost, there exists a partial order P on the operations in v~ such
that:

1. P orders all wri te operations, and orders all read operations with respect to the wri te opera-
tions.

2. The value returned by every read operation is exactly the one written by the previous wri te
operation in P , or the initial value, if there is no such previous wri te in P .

.

4.

The order in P is consistent with the order of read and wri te requests submitted at each node.

As sume there exists an interval of t ime longer than t in which no messages are lost. Further,
assume an operation, ~, completes before the interval begins, and another operation, ¢, begins
after the interval ends. Then ¢ does not precede O in the partial order P .

This gua r a n t ee allows for some stale d a t a when messages are lost, b u t p rovides a t i m e l imit on
how long it takes for cons is tency to re tu rn , once the pa r t i t i on heals. Th is def in i t ion can of course be
general ized to p rov ide cons is tency guaran tees w h e n only some of t he nodes are connec ted , a n d w h e n
connec t ions are available only some of the t ime. These genera l iza t ions will be fu r the r e x a m i n e d in
fu tu re work.

A var ian t of t he cent ra l ized a lgo r i t hm descr ibed in Sect ion 4.3 is t - C o n n e c t e d Cons i s ten t . As-
s u m e node C is t he cent ra l ized node. T h e a lgo r i t hm behaves as follows:

read at node A:

A sends a reques t to C for the mos t recent value. If A receives a response f rom C w i t h i n t ime
2 • tmsg + tloc~I, it saves the value and r e tu rns it to t he client. Otherwise , A conc ludes t h a t
a message was lost and it r e t u rn s the value wi th the h ighes t sequence n u m b e r t h a t has ever
been received f rom C, or t he ini t ial value if no value has yet been received f rom C. (W h e n a
client read reques t occurs at C, it acts like any o the r node , send ing messages to itself.)

write at A:

A sends a message to C wi th the new value. A waits 2 . tmsg q- tlocal, or unt i l it receives an
a c k n o w l e d g m e n t f rom C, and t h e n sends an acknowledgmen t to the client. At th is po in t ,
e i ther C has learned of the new value, or a message was lost, or b o t h events occur red . I f A
conc ludes t h a t a message was lost, it per iodica l ly r e t r a n s m i t s t he value to C (a long wi th all
values lost d u r i n g earl ier write opera t ions) un t i l it receives an a c k n o w l e d g m e n t f rom C. (As
in the case of read opera t ions , when a client write reques t occurs at C, it acts like any o t h e r
node, s end ing messages to itself.)

57

• New value is received at C:
C serializes the write requests t ha t it hears abou t by ass igning t h e m consecu t ive in teger tags.
Per iod ica l ly C broadcas t s the la test value and sequence n u m b e r to all o the r nodes .

T h e o r e m 4 The modified centralized algorithm is t-Connected consistent.

Proof: Firs t , it is clear t h a t in execut ions in which no messages are lost, the ope ra t i ons are a tomic .
A n execu t ion is a tomic if every ope ra t i on acts as if it is execu ted at a s ingle ins tant ; in this case,
t h a t single ins tan t occurs w h e n C processes the opera t ion . C serializes the opera t ions , e n s u r i n g
a tomic cons is tency in execut ions in which all messages are del ivered.

Next , we exami ne execut ions in which messages are lost. T h e pa r t i a l order , P is c o n s t r u c t e d
as follows. Write opera t ions are o rde red by the sequence n u m b e r ass igned by the cen t ra l node .
E a c h read o p e r a t i o n is sequenced af ter the write ope ra t i on whose value it r e tu rns . I t is c lear by
the c o n s t r u c t i o n t h a t the pa r t i a l o rder P satisfies cr i te r ia 1 and 2 of t he def in i t ion of t - C o n n e c t e d
consis tency. As the a l g o r i t h m h a n d l e s requests in the order received, c r i te r ion 3 is also c lear ly t rue .

I n showing t h a t the par t i a l o rder respects c r i te r ion 4, t he re are four cases: write followed by
read, write followed by write, read followed by read, a n d read followed by write. Let t i m e t be
long e n o u g h for a write ope ra t i on to comple te (and for C to assign a sequence n u m b e r to t he new
value) , and for one of t he per iod ic b roadcas t s f rom C to occur .

. write followed by read
Assume a write occurs at Aw, after which an interval of t ime longer t h a n t passes in w h i c h
all messages are del ivered. After this, a read is r eques t ed at some node. By the end of t h e
interval , two th ings have happened . Firs t , Aw has not i f ied the cen t ra l node of the new value,
and the write ope ra t i on has been assigned a sequence number . Second, t he cen t r a l n o d e has
r eb roadcas t t h a t value (or a la ter value in the par t ia l order) to all o the r nodes d u r i n g one of
the per iod ic b roadcas t s . As a resul t , t he read ope ra t i on does not r e t u r n an ear l ier value, a n d
therefore it mus t come after the write in the pa r t i a l o rder P .

. write followed by write
Assume a write occurs at Aw, after which an in terval of t ime longer t h a n t passes in wh ich
all messages axe del ivered. After this , a write is r eques ted at some node . As in t he p rev ious
case, by t he end of the in terval in wh ich messages are del ivered, the cen t ra l n o d e has ass igned
a sequence n u m b e r to the write ope ra t i on at Aw. As a resul t , t he la ter write o p e r a t i o n is
sequenced by the cen t ra l node af ter the first write opera t ion . There fo re the second write
comes af ter t he first write in the pa r t i a l o rder P .

. read followed by read
Assume a read ope ra t i on occurs at Br , af ter which an in terval of t ime longer t h a n t passes in
wh ich all messages are del ivered. After this, a read is r eques t ed at some node . Let ¢ be the
write o p e r a t i o n whose value the first read ope ra t i on at Br re tu rns . By the end of t he in te rva l
in which messages are del ivered, the cent ra l node has ass igned a sequence n u m b e r to ¢ , a n d
has b roadcas t the value of ¢ (or a la ter value in the pa r t i a l order) to all o the r nodes . As a
resul t , t he second read ope ra t i on does not r e t u r n a value ear l ier in t he pa r t i a l o rde r t h a n ¢ .
There fo re the second read ope ra t i on does not p recede the first in the pa r t i a l o rde r P .

. read followed by write
Assume a read ope ra t i on occurs at Br , af ter which an in terval of t ime longer t h a n t passes in
which all messages are del ivered. After this, a write is r eques t ed at some node . Let ¢ be t he

58

write operation whose value the first read operation at Br returns. By the end of the interval
in which messages are delivered, the central node has assigned a sequence number to ~/,, and
as a result all write operations beginning after the interval are serialized after ¢. Therefore
the write operation does not precede the read operation in the partial order P.

Therefore, P satisfies criterion 4 of the definition, and this algorithm is t-Connected Consistent.

5 Conc lus ion

In this note, we have shown that it is impossible to reliably provide atomic, consistent data when
there are partitions in the network. It is feasible, however, to achieve any two of the three properties:
consistency, availability, and partition tolerance. In an asynchronous model, when no clocks are
available, the impossibility result is fairly strong: it is impossible to provide consistent data, even
allowing stale data to be returned when messages are lost. However in partially synchronous models
it is possible to achieve a practical compromise between consistency and availability. In particular,
most real-world systems today are forced to settle with returning "most of the data, most of the
time." Formalizing this idea and studying algorithms for achieving it is an interesting subject for
future theoretical research.

A c k n o w l e d g m e n t s

We thank Eric Brewer for his interesting PODC talk, for providing us with his talk slides and notes,
and for encouraging us in writing this note. We also thank Charles Leiserson for suggesting this
problem and for interesting and helpful discussions.

References

[1] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Daphne Koller, David Peleg, and Rfidiger Reischuk. Achiev-
able cases in an asynchronous environment. In 28th Annual Symposium on Foundations of Computer
Science, pages 337-346, Los Angeles, California, October 1987.

[2] Eric A. Brewer. Towards robust distributed systems. (Invited Talk) Principles of Distributed Computing,
Portland, Oregon, July 2000.

[3] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems, 12(3):463-492, July 1990.

[4] Leslie Lamport. On interprocess communication - parts I and II. Distributed Computing, 1(2).'77-101,
April 1986.

[5] Nancy Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

59

