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The CAP theorem states a database cannot guarantee 
consistency, availability, and partition-tolerance at the same 
time. But you can't sacrifice partition-tolerance 
(see here and here), so you must make a tradeoff between 
availability and consistency. Managing this tradeoff is a central 
focus of the NoSQL movement. 

Consistency means that after you do a successful write, future 
reads will always take that write into account. Availability means 
that you can always read and write to the system. During a 
partition, you can only have one of these properties. 

Systems that choose consistency over availability have to deal 
with some awkward issues. What do you do when the database 
isn't available? You can try buffering writes for later, but you risk 
losing those writes if you lose the machine with the buffer. Also, 
buffering writes can be a form of inconsistency because a client 
thinks a write has succeeded but the write isn't in the database 
yet. Alternatively, you can return errors back to the client when 
the database is unavailable. But if you've ever used a product 
that told you to "try again later", you know how aggravating this 
can be. 

The other option is choosing availability over consistency. The 
best consistency guarantee these systems can provide is 
"eventual consistency". If you use an eventually consistent 
database, then sometimes you'll read a different result than you 
just wrote. Sometimes multiple readers reading the same key at 
the same time will get different results. Updates may not 
propagate to all replicas of a value, so you end up with some 
replicas getting some updates and other replicas getting 
different updates. It is up to you to repair the value once you 
detect that the values have diverged. This requires tracing back 
the history using vector clocks and merging the updates together 
(called "read repair"). 

I believe that maintaining eventual consistency in the application 
layer is too heavy of a burden for developers. Read-repair code 



is extremely susceptible to developer error; if and when you 
make a mistake, faulty read-repairs will introduce irreversible 
corruption into the database. 

So sacrificing availability is problematic and eventual consistency 
is too complex to reasonably build applications. Yet these are the 
only two options, so it seems like I'm saying that you're damned 
if you do and damned if you don't. The CAP theorem is a fact of 
nature, so what alternative can there possibly be? 

There is another way. You can't avoid the CAP theorem, but you 
can isolate its complexity and prevent it from sabotaging your 
ability to reason about your systems. The complexity caused by 
the CAP theorem is a symptom of fundamental problems in how 
we approach building data systems. Two problems stand out in 
particular: the use of mutable state in databases and the use of 
incremental algorithms to update that state. It is the interaction 
between these problems and the CAP theorem that causes 
complexity. 

In this post I'll show the design of a system that beats the CAP 
theorem by preventing the complexity it normally causes. But I 
won't stop there. The CAP theorem is a result about the degree 
to which data systems can be fault-tolerant to machine failure. 
Yet there's a form of fault-tolerance that's much more important 
than machine fault-tolerance: human fault-tolerance. If there's 
any certainty in software development, it's that developers 
aren't perfect and bugs will inevitably reach production. Our data 
systems must be resilient to buggy programs that write bad 
data, and the system I'm going to show is as human fault-
tolerant as you can get. 

This post is going to challenge your basic assumptions on how 
data systems should be built. But by breaking down our current 
ways of thinking and re-imagining how data systems should be 
built, what emerges is an architecture more elegant, scalable, 
and robust than you ever thought possible. 

What is a data system? 
Before we talk about system design, let's first define the problem 
we're trying to solve. What is the purpose of a data system? 
What is data? We can't even begin to approach the CAP theorem 
unless we can answer these questions with a definition that 
clearly encapsulates every data application. 



Data applications range from storing and retrieving objects, 
joins, aggregations, stream processing, continuous computation, 
machine learning, and so on and so on. It's not clear that there 
is such a simple definition of data systems -- it seems that the 
range of things we do with data is too diverse to capture with a 
single definition. 

However, there is such a simple definition. This is it: 

Query = Function(All Data) 

That's it. This equation summarizes the entire field of databases 
and data systems. Everything in the field -- the past 50 years of 
RDBMS's, indexing, OLAP, OLTP, MapReduce, ETL, distributed 
filesystems, stream processors, NoSQL, etc. -- is summarized by 
that equation in one way or another. 

A data system answers questions about a dataset. Those 
questions are called "queries". And this equation states that a 
query is just a function of all the data you have. 

This equation may seem too general to be useful. It doesn't 
seem to capture any of the intricacies of data system design. But 
what matters is that every data system falls into that equation. 
The equation is a starting point from which we can explore data 
systems, and the equation will eventually lead to a method for 
beating the CAP theorem. 

There are two concepts in this equation: "data" and "queries". 
These are distinct concepts that are often conflated in the 
database field, so let's be rigorous about what these concepts 
mean. 

Data 
Let's start with "data". A piece of data is an indivisible unit that 
you hold to be true for no other reason than it exists. It is like an 
axiom in mathematics. 

There are two crucial properties to note about data. First, data is 
inherently time based. A piece of data is a fact that you know to 
be true at some moment of time. For example, suppose Sally 
enters into her social network profile that she lives in Chicago. 
The data you take from that input is that she lived in Chicago as 
of the particular moment in time that she entered that 
information into her profile. Suppose that on a later date Sally 
updates her profile location to Atlanta. Then you know that she 



lived in Atlanta as of that particular time. The fact that she lives 
in Atlanta now doesn't change the fact that she used to live in 
Chicago. Both pieces of data are true. 

The second property of data follows immediately from the first: 
data is inherently immutable. Because of its connection to a 
point in time, the truthfulness of a piece of data never changes. 
One cannot go back in time to change the truthfulness of a piece 
of data. This means that there are only two main operations you 
can do with data: read existing data and add more 
data. CRUD has become CR. 

I've left out the "Update" operation. This is because updates 
don't make sense with immutable data. For example, "updating" 
Sally's location really means that you're adding a new piece of 
data saying she lives in a new location as of a more recent time. 

I've also left out the "Delete" operation. Again, most cases of 
deletes are better represented as creating new data. For 
example, if Bob stops following Mary on Twitter, that doesn't 
change the fact that he used to follow her. So instead of deleting 
the data that says he follows her, you'd add a new data record 
that says he un-followed her at some moment in time. 

There are a few cases where you do want to permanently delete 
data, such as regulations requiring you to purge data after a 
certain amount of time. These cases are easily supported by the 
data system design I'm going to show, so for the purposes of 
simplicity we can ignore these cases. 

This definition of data is almost certainly different than what 
you're used to, especially if you come from the relational 
database world where updates are the norm. There are two 
reasons for this. First, this definition of data is extremely 
generic: it's hard to think of a kind of data that doesn't fit under 
this definition. Second, the immutability of data is the key 
property we're going to exploit in designing a human fault-
tolerant data system that beats the CAP theorem. 

Query 
The second concept in the equation is the "query". A query is a 
derivation from a set of data. In this sense, a query is like a 
theorem in mathematics. For example, "What is Sally's current 
location?" is a query. You would compute this query by returning 
the most recent data record about Sally's location. Queries are 



functions of the complete dataset, so they can do anything: 
aggregations, join together different types of data, and so on. So 
you might query for the number of female users of your service, 
or you might query a dataset of tweets for what topics have 
been trending in the past few hours. 

I've defined a query as a function on the complete dataset. Of 
course, many queries don't need the complete dataset to run -- 
they only need a subset of the dataset. But what matters is that 
my definition encapsulates all possible queries, and if we're 
going to beat the CAP theorem, we must be able to do so for any 
query. 

Beating the CAP theorem 
The simplest way to compute a query is to literally run a function 
on the complete dataset. If you could do this within your latency 
constraints, then you'd be done. There would be nothing else to 
build. 

Of course, it's infeasible to expect a function on a complete 
dataset to finish quickly. Many queries, such as those that serve 
a website, require millisecond response times. However, let's 
pretend for a moment that you can compute these functions 
quickly, and let's see how a system like this interacts with the 
CAP theorem. As you are about to see, a system like this not 
only beats the CAP theorem, but annihilates it. 

The CAP theorem still applies, so you need to make a choice 
between consistency and availability. The beauty is that once 
you decide on the tradeoff you want to make, you're done. The 
complexity the CAP theorem normally causes is avoided by using 
immutable data and computing queries from scratch. 

If you choose consistency over availability, then not much 
changes from before. Sometimes you won't be able to read or 
write data because you traded off availability. But for the cases 
where rigid consistency is a necessity, it's an option. 

Things get much more interesting when you choose availability 
over consistency. In this case, the system is eventually 
consistent without any of the complexities of eventual 
consistency. Since the system is highly available, you can always 
write new data and compute queries. In failure scenarios, 
queries will return results that don't incorporate previously 



written data. Eventually that data will be consistent and queries 
will incorporate that data into their computations. 

The key is that data is immutable. Immutable data means 
there's no such thing as an update, so it's impossible for 
different replicas of a piece of data to become inconsistent. This 
means there are no divergent values, vector clocks, or read-
repair. From the perspective of queries, a piece of data either 
exists or doesn't exist. There is just data and functions on that 
data. There's nothing you need to do to enforce eventual 
consistency, and eventual consistency does not get in the way of 
reasoning about the system. 

What caused complexity before was the interaction between 
incremental updates and the CAP theorem. Incremental updates 
and the CAP theorem really don't play well together; mutable 
values require read-repair in an eventually consistent system. By 
rejecting incremental updates, embracing immutable data, and 
computing queries from scratch each time, you avoid that 
complexity. The CAP theorem has been beaten. 

Of course, what we just went through was a thought experiment. 
Although we'd like to be able to compute queries from scratch 
each time, it's infeasible. However, we have learned some key 
properties of what a real solution will look like: 

1. The system makes it easy to store and scale an 
immutable, constantly-growing dataset 

2. The primary write operation is adding new immutable facts 
of data 

3. The system avoids the complexity of the CAP theorem by 
recomputing queries from raw data 

4. The system uses incremental algorithms to lower the 
latency of queries to an acceptable level 

Let's begin our exploration of what such a system looks like. 
Note that everything from here on out is optimization. 
Databases, indexing, ETL, batch computation, stream processing 
-- these are all techniques for optimizing query functions and 
bringing the latency down to an acceptable level. This is a simple 
but profound realization. Databases are usually made out to be 
the centerpiece of data management, but really they're one part 
of a bigger picture. 



Batch computation 
Figuring out how to make an arbitrary function on an arbitrary 
dataset run quickly is a daunting problem. So let's relax the 
problem a little bit. Let's pretend that it's okay for queries to be 
out of date by a few hours. Relaxing the problem this way leads 
to a simple, elegant, and general-purpose solution for building 
data systems. Afterwards, we'll extend the solution so that the 
problem is no longer relaxed. 

Since a query is a function of all the data, the easiest way to 
make queries run fast is to precompute them. Whenever there's 
new data, you just recompute everything. This is feasible 
because we relaxed the problem to allow queries to be out of 
date by a few hours. Here's an illustration of this workflow: 

 
 

To build this, you need a system that: 

1. Can easily store a large and constantly growing dataset 
2. Can compute functions on that dataset in a scalable way 

Such a system exists. It's mature, battle-tested across hundreds 
of organizations, and has a large ecosystem of tools. It's 
called Hadoop. Hadoop isn't perfect, but it's the best tool out 
there for doing batch processing. 

A lot of people will tell you that Hadoop is only good for 
"unstructured" data. This is completely false. Hadoop is fantastic 
for structured data. Using tools like Thrift or Protocol Buffers, 
you can store your data using rich, evolvable schemas. 

Hadoop is comprised of two pieces: a distributed filesystem 
(HDFS), and a batch processing framework (MapReduce). HDFS 
is good at storing a large amount of data across files in a 



scalable way. MapReduce is good at running computations on 
that data in a scalable way. These systems match our needs 
perfectly. 

We'll store data in flat files on HDFS. A file will contain a 
sequence of data records. To add new data, you simply append a 
new file containing new data records to the folder that contains 
all the data. Storing data like this on HDFS solves the "Store a 
large and constantly growing dataset" requirement. 

Precomputing queries off of that data is similarly straightforward. 
MapReduce is an expressive enough paradigm such that nearly 
any function can be implemented as a series of MapReduce jobs. 
Tools like Cascalog, Cascading, and Pig make implementing 
these functions much easier. 

Finally, you need to index the results of the precomputation so 
that the results can be quickly accessed by an application. 
There's a class of databases that are extremely good at 
this. ElephantDB and Voldemort read-only specialize in exporting 
key/value data from Hadoop for fast querying. These databases 
support batch writes and random reads, and they do not support 
random writes. Random writes cause most of the complexity in 
databases, so by not supporting random writes these databases 
are extraordinarily simple. ElephantDB, for example, is only a 
few thousand lines of code. That simplicity leads to these 
databases being extremely robust. 

Let's look at an example of how the batch system fits together. 
Suppose you're building a web analytics application that tracks 
page views, and you want to be able to query the number of 
page views over any period of time, to a granularity of one hour. 

 
Implementing this is easy. Each data record contains a single 
page view. Those data records are stored in files on HDFS. A 
function that rolls up page views per URL by hour is 
implemented as a series of MapReduce jobs. The function emits 



key/value pairs, where each key is a [URL, hour] pair and each 
value is a count of the number of page views. Those key/value 
pairs are exported into an ElephantDB database so that an 
application can quickly get the value for any [URL, hour] pair. 
When an application wants to know the number of page views 
for a time range, it queries ElephantDB for the number of page 
views for each hour in that time range and adds them up to get 
the final result. 

Batch processing can compute arbitrary functions on arbitrary 
data with the drawback that queries are out of date by a few 
hours. The "arbitrariness" of such a system means it can be 
applied to any problem. More importantly, it's simple, easy to 
understand, and completely scalable. You just have to think in 
terms of data and functions, and Hadoop takes care of the 
parallelization. 

The batch system, CAP, and human fault-tolerance 
So far so good. So how does the batch system I've described line 
up with CAP, and does it meet our goal of being human fault-
tolerant? 

Let's start with CAP. The batch system is eventually consistent in 
the most extreme way possible: writes always take a few hours 
to be incorporated into queries. But it's a form of eventual 
consistency that's easy to reason about because you only have 
to think about data and functions on that data. There's no read-
repair, concurrency, or other complex issues to consider. 

Next, let's take a look at the batch system's human fault-
tolerance. The human fault-tolerance of the batch system is as 
good as you can get. There are only two mistakes a human can 
make in a system like this: deploy a buggy implementation of a 
query or write bad data. 

If you deploy a buggy implementation of a query, all you have to 
do to fix things is fix the bug, deploy the fixed version, and 
recompute everything from the master dataset. This works 
because queries are pure functions. 

Likewise, writing bad data has a clear path to recovery: delete 
the bad data and precompute the queries again. Since data is 
immutable and the master dataset is append-only, writing bad 
data does not override or otherwise destroy good data. This is in 



stark contrast to almost all traditional databases where if you 
update a key you lose the old value. 

Note that MVCC and HBase-like row versioning do not come 
close to this level of human fault-tolerance. MVCC and HBase 
row versioning don't keep data around forever: once the 
database compacts the row, the old value is gone. Only an 
immutable dataset guarantees that you have a path to recovery 
when bad data is written. 

Realtime layer 
Believe it or not, the batch solution almost solves the complete 
problem of computing arbitrary functions on arbitrary data in 
realtime. Any data older than a few hours has already been 
incorporated into the batch views, so all that's left to do is 
compensate for the last few hours of data. Figuring out how to 
make queries realtime against a few hours of data is much 
easier than doing so against the complete dataset. This is a 
critical insight. 

To compensate for those few hours of data, you need a realtime 
system that runs in parallel with the batch system. The realtime 
system precomputes each query function for the last few hours 
of data. To resolve a query function, you query the batch view 
and the realtime view and merge the results together to get the 
final answer. 

 



The realtime layer is where you use read/write databases like 
Riak or Cassandra, and the realtime layer relies on incremental 
algorithms to update the state in those databases. 

The analog to Hadoop for realtime computation is Storm. I wrote 
Storm to make it easy to do large amounts of realtime data 
processing in a way that's scalable and robust. Storm runs 
infinite computations over streams of data and gives strong 
guarantees on the processing of the data. 

Let's see an example of the realtime layer by going back to the 
running example of querying the number of page views for a 
URL over a time range. 

 
The batch system is the same as before: a batch workflow based 
on Hadoop and ElephantDB precomputes the query for 
everything but the last few hours of data. All that's left is to 
build the realtime system that compensates for those last few 
hours of data. 

We'll roll up the stats for the last few hours into Cassandra, and 
we'll use Storm to process the stream of pageviews and 
parallelize the updates into the database. Each pageview leads 
to a counter for a [URL, hour] key to be incremented in 
Cassandra. That's all there is to it -- Storm makes these kinds of 
things very simple. 

Batch layer + realtime layer, the CAP theorem, and human fault-
tolerance 

In some ways it seems like we're back to where we started. 
Achieving realtime queries required us to use NoSQL databases 
and incremental algorithms. This means we're back in the 
complex world of divergent values, vector clocks, and read-
repair. 



There's a key difference though. Since the realtime layer only 
compensates for the last few hours of data, everything the 
realtime layer computes is eventually overridden by the batch 
layer. So if you make a mistake or something goes wrong in the 
realtime layer, the batch layer will correct it. All that complexity 
is transient. 

This doesn't mean you shouldn't care about read-repair or 
eventual consistency in the realtime layer. You still want the 
realtime layer to be as consistent as possible. But when you 
make a mistake you don't permanently corrupt your data. This 
removes a huge complexity burden from your shoulders. 

In the batch layer, you only have to think about data and 
functions on that data. The batch layer is really simple to reason 
about. In the realtime layer, on the other hand, you have to use 
incremental algorithms and extremely complex NoSQL 
databases. Isolating all that complexity into the realtime layer 
makes a huge difference in making robust, reliable systems. 

Additionally, the realtime layer doesn't affect the human fault-
tolerance of the system. The append-only immutable dataset in 
the batch layer is still the core of the system, so any mistake can 
be recovered from just like before. 

Let me share a personal story about the great benefits of 
isolating complexity in the realtime layer. I had a system very 
much like the one I described here: Hadoop and ElephantDB for 
the batch layer, and Storm and Cassandra for the realtime layer. 
Due to poor monitoring on my part, I woke up one day to 
discover that Cassandra had run out of space and was timing out 
on every request. This caused my Storm topology to fail and the 
stream of data to back up on the queues. The same messages 
kept getting replayed (and kept failing) over and over. 

If I didn't have a batch layer, I would have been forced to scale 
and recover Cassandra. This is non-trivial. Even worse, much of 
the database was likely inaccurate due to the same messages 
being replayed many times. 

Fortunately, all this complexity was isolated in my realtime layer. 
I flushed the backed up queues into the batch layer and made a 
fresh Cassandra cluster. The batch layer ran like clockwork and 
within a few hours everything was back to normal. No data was 
lost and there was no inaccuracy in our queries. 



Garbage collection 
Everything I've described in this post is built upon the foundation 
of an immutable, constantly growing dataset. So what do you do 
if your dataset is so large that it's impractical to store all data for 
all time, even with horizontally scalable storage? Does this use 
case break everything I've described? Should you go back to 
using mutable databases? 

No. It's easy to extend the basic model with "garbage collection" 
to handle this use case. Garbage collection is simply a function 
that takes in the master dataset and returns a filtered version of 
the master dataset. Garbage collection gets rid of data that is of 
low value. You can use any strategy you want for garbage 
collection. You can simulate mutability by only keeping the last 
value for an entity, or you can keep a history for each entity. For 
example, if you're dealing with location data, you may want to 
keep one location per person per year along with the current 
location. Mutability is really just an inflexible form of garbage 
collection (that also interacts poorly with the CAP theorem). 

Garbage collection is implemented as a batch processing task. 
It's something you run occasionally, perhaps once per month. 
Since garbage collection is run as an offline batch processing 
task, it doesn't affect how the system interacts with the CAP 
theorem. 

Conclusion 
What makes scalable data systems difficult isn't the CAP 
theorem. It's a reliance on incremental algorithms and mutable 
state that leads to complexity in our systems. It's only recently 
with the rise of distributed databases that this complexity has 
gotten out of control. But that complexity has always been there. 

I said in the beginning of this post that I would challenge your 
basic assumptions of how data systems should be built. I turned 
CRUD into CR, split persistence into separate batch and realtime 
systems, and obsessed over the importance of human fault-
tolerance. It took a lot of hard-earned experience over the years 
to break my old assumptions and arrive at these conclusions. 

The batch/realtime architecture has a lot of interesting 
capabilities that I didn't cover yet. It's worth summarizing some 
of these now: 



1. Algorithmic flexibility: Some algorithms are difficult to 
compute incrementally. Computing unique counts, for 
example, can be challenging if the sets of uniques get 
large. The batch/realtime split gives you the flexibility to 
use the exact algorithm on the batch layer and an 
approximate algorithm on the realtime layer. The batch 
layer constantly overrides the realtime layer, so the 
approximation gets corrected and your system exhibits the 
property of "eventual accuracy". 

2. Schema migrations are easy: Gone are the days of 
difficult schema migrations. Since batch computation is at 
the core of the system, it's easy to run functions on the 
complete dataset. This makes it easy to change the 
schema of your data or views. 

3. Easy ad-hoc analysis: The arbitrariness of the batch 
layer means you can run any query you like on your data. 
Since all data is accessible in one location, this is easy and 
convenient. 

4. Self-auditing: By treating data as immutable, you get a 
self-auditing dataset. The dataset records its own history. 
I've discussed how important this is for human fault-
tolerance, but it's also super useful for doing analytics. 

I don't claim to have "solved" the Big Data space, but I've laid 
down the framework for thinking about Big Data. The 
batch/realtime architecture is highly general and can be applied 
to any data system. Rather than give you a fish or a fishing rod, 
I've shown you how to make a fishing rod for any kind of fish 
and any kind of water. 

There's lots more work to do to improve our collective ability to 
attack Big Data problems. Here are some key areas of 
improvement: 

1. Expanded data models for batch-writable, random-
read databases: Not every application is supported by a 
key/value data model. This is why my team is investing in 
expanding ElephantDB to support search, document 
databases, range queries, and more. 

2. Better batch processing primitives: Hadoop is not the 
end-all-be-all of batch computation. It can be inefficient for 
certain kinds of computations. Spark is an important 
project doing interesting work in expanding the MapReduce 
paradigm. 



3. Improved read/write NoSQL databases: There's room 
for more databases with different data models, and these 
projects in general will benefit from more maturation. 

4. High level abstractions: One of the most interesting 
areas of future work is high level abstractions that map to 
a batch processing component and a realtime processing 
component. There's no reason why you shouldn't have the 
conciseness of a declarative language with the robustness 
of the batch/realtime architecture. 

A lot of people want a scalable relational database. What I hope 
you've realized in this post is that you don't want that at all! Big 
data and the NoSQL movement seemed to make data 
management more complex than it was with the RDBMS, but 
that's only because we were trying to treat "Big Data" the same 
way we treated data with an RDBMS: by conflating data and 
views and relying on incremental algorithms. The scale of big 
data lets you build systems in a completely different way. By 
storing data as a constantly expanding set of immutable facts 
and building recomputation into the core, a Big Data system is 
actually easier to reason about than a relational system. And it 
scales. 

 

Commentary 
shearic: 
Great post. Jives very well with what we’re doing at Yieldbot at a high level, at 
least on the batch side and with a little different tech, and what we’re headed 
toward on the realtime piece as well. 

In thinking about all of this the hardest problem I’ve found to deal with is that of 
providing sorted results.  Sorting is interesting because it is basically expressing 
constraints that aren’t absolute but instead is a function of the results being 
returned (ie, the entries are compared to each other not against some explicit 
constraint). 

In my mind sorting is the most challenging aspect of the batch+realtime mashup 
approach to satisfying a query.  Not in the case where it is feasible to read in the 
entire datasets from both the batch and query side and then sort the results at the 
mashup point, but where there’s a large dataset where it is only feasible to read in 
some of the results from either side (and therefore basically each side being 
sorted) and then mash it up. 



It seems like the only reasonable choice here is to sacrifice accuracy of what the 
sort order of the entries really should be.  Interested on your thoughts on that 
particular aspect of querying. 

1. nathanmarz: 
Part of the difficulty you’re facing is the immaturity of the existing 
tooling. K/V data model is not good enough when you want to access a 
large sorted list. The work we’re doing for EDB 2.0 will address these 
kinds of more advanced data models. EDB 2.0 will make it easy to 
implement a key -> sorted list batch-writable database, and then you 
quickly query for a sub-portion of the list. EDB-search will also provide 
similar functionality. 
 
The realtime aspect is always challenging, and what you do for sorting in 
realtime is highly dependent on the intricacies of your query. Distributed 
RPC might help with something like this, depending on how intense is the 
computation for resolving the query. 

i. shearic: 
It’s not so much the sorting of the batch or the sorting of the 
realtime sides taken on their own that I think is the issue (we don’t 
use strictly K/V for our batch data for this reason).  Where the 
issue lies is when you want to join the two sides. 
 
If you have data where the sort on the realtime side is an order 
much different than the sort on the batch data, such that the sort 
order on the combined data should be much different than the sort 
order batch data, it’s that issue that I’m describing. 
 
The problem lies in the nature of not having all the data in one 
place where it can all be sorted together. 
 
What it speaks to is the accuracy not of any particular piece of 
data, but the accuracy of how the data are related to each other. 

a. nathanmarz: 
I think I’d have to know more of the specifics 
of your data/queries to give a more useful 
response. Feel free to email me or ping me on 
IRC. 

 

kevinmarks: 
The old model was MySQL for the batch layer and memcached for the realtime 
layer; this uses Hadoop and Cassandra to replace them 

 



jeskeca: 
This is some kind of functional-is-equivalent-to-imperative exploration which 
doesn’t change any of the CAP constraints. How do you handle consistency 
related operations, such as “withdrawl $100 only if the user can afford it”? We 
can model the withdrawl as the “creation of a withdrawl record”, and a batch-or-
realtime system can integrate the withdrawls into a current-bank-balance… but if 
we want to avoid that bank balance going negative, we need to choose 
consistency-over-avaialbility, and that isn’t changed by this alternate way of 
applying updates. 

1. nathanmarz: 
AFAIK, banks choose availability (and thus eventual consistency). This is 
a pragmatic decision since they lose business if the system ever becomes 
unavailable. Banks are the classic example which really need an 
immutable dataset that tracks the history of each entity (also called 
auditing). They workaround the consistency problem by allowing you to 
withdrawal more than you have in your account and then charge you fees 
for doing this: http://en.wikipedia.org/wik... 

i. Henrique: 
Banks are a good case of changing the business to adapt to the 
constraints, rather than the other way around. 

ii. nathanmarz: 
The most relevant part of that link is this part:  “If the ATM is 
unable to communicate with the cardholder’s bank, it may 
automatically authorize a withdrawal based on limits preset by the 
authorizing network.” 
That means that banks are highly available, eventually consistent 
systems. 

iii. Tim McCormack: 
Banks do not enforce consistency in the short term – you can do all 
sorts of crazy (illegal) money tricks if you move quickly. 

 

Guest: 
It seems that this approach completely fails at the most interesting form of data: 
state and/or transactions. When you collect data for statistical analysis, it doesn’t 
matter if some data points are only included into a later calculation. But if you are 
saving the state of something, then the game with the immutability by tacking on 
a timestamp doesn’t help, in particular: 

> Things get much more interesting when you  
> choose availability over consistency. In this case,  
> the system is eventually consistent without any of  
> the complexities of eventual consistency. (…) 
 



just doesn’t work because when your new state, i.e. the next piece of data that you 
add to the database, depends on the saved state, or even any query! 

1. nathanmarz: 
You can still choose full consistency, in which case you 
must accept that the system will sometimes be 
unavailable. Alternatively, you can take a different 
approach like what banks do, as I commented above. 
( http://nathanmarz.com/blog/... ) 

 

Heath Borders: 
Great post! 
I still feel like a vector clock of some kind would be necessary even we choose 
eventual consistency because our systems will be order-dependent, and we’ll need 
to know when we have conflicts. 
 
For example, I have an online presence system that allows a user to either login or 
logout.  My data is partitioned across servers A and B.1. User login (data 
propagated to servers A and B)2. Network split3. User logout (data propagated to 
server A)4. User login (data propagated to server B)5. User logout (data 
propagated to server B) 
 
I’m not concerned with the real-time implications of these events, but a correctly 
audited timeline.  Without a vector clock to show a conflict, my data could reflect 
2 different event streams:1. login, logout, login, logout2. login, login, logout, 
logout 
 
The vector clock could simply be incorporated into the state records to assist in 
merging.I’m new to the big data space, and haven’t implemented any of these 
ideas in a production setting, but I’m still interested in the subject.  Please forgive 
me if this is a noob question, or if incorporating vector clocks into immutable 
records is standard practice. 

1. nathanmarz: 
You don’t need vector clocks in the batch layer. Every 
piece of data is associated with the moment in time that it 
occurred, and this provides the ordering you need. So the 
login/logout data would be written as: 
 
Login as of time 12. 
Logout as of time 23.  
Login as of time 34.  
Logout as of time 4 
 



(For the realtime layer you do need vector clocks, but I 
think you understood that already) 

 

davidells: 
The title claim of this post is overstated, but I appreciate the general reasoning 
about the problem and the concrete architectural “proof”. 
 
You do get the availability, and gain a lot by isolating the burden of consistency 
to a problem of availability of the real-time layer. 
 
But such a system doesn’t beat the CAP theorem, since you are subject to 
availability failures (or other mistakes) in the real-time system, with only 
eventually consistent (but highly available) data behind that in the batch system. 
 
So in the end, you’re still bound by availability guarantees in order to provide 
consistent data, just as the CAP theorem says, right? (I may be totally wrong 
here.) 

1. nathanmarz: 
Regarding “beating the CAP theorem”, this doesn’t mean “eliminating” 
it. The interaction between the CAP theorem and mutability causes a lot of 
complexity that you avoid or greatly subdue by basing a system on 
immutability. 
 
The consistency vs. availability tradeoff is still yours to make in the 
realtime layer. If you choose consistency, then your realtime layer will 
sometimes be unavailable (although you can always serve up the batch 
portion of the views if you want, in which case you have an interesting 
form of eventual consistency). 
 
If you choose availability in the realtime layer, then you still have to deal 
with vector clocks and read-repair. You should of course try to make your 
code correct, but when you make a mistake, you won’t permanently 
corrupt the database. 
 
Another important point is that since the realtime layer only deals with a 
few hours of data, the realtime db cluster can be relatively small than if it 
were dealing with the entire dataset. So you might only have a 6 node 
Cassandra cluster instead of a 20 node Cassandra cluster. This makes it 
less likely for events to occur that would trigger an inconsistent situation. 

i. davidells: 
Thanks for your response. I would say minimizing 
the typical trade-offs we’re used to seeing with CAP 
and mainstream tools qualifies as beating it, 



actually. 
 
There are pieces of what you outlined that ring 
familiar with a lot of folks, regarding a slower or 
inconsistent store underneath a smaller caching 
layer. We did this for a while at scorm.com back 
when Amazon’s SimpleDB was only available as 
eventually consistent, and we judiciously used 
memcached to cover our exposure where needed. 
(That’s all on a much smaller scale than what you’re 
addressing here, and I don’t see SDB as a very great 
choice, but it works at our current size.) 
 
I would also agree from experience that immutable 
data has far fewer headaches than mutable data. I 
haven’t thought of it in a general way like this, 
though. I’m still wrapping my head around the 
implication of that. 
 
I appreciate your time and effort to not just wax 
some theoretical, but lay out the architecture for a 
scalable system that you’ve actually run, with 
success, for a real purpose. It’s a lot less common 
than much of the codeless theoretical musings you 
find on the net. Hey, not to mention thanks for all 
the Storm/ElephantDB/etc code too! This article has 
me interested to scope out and play with some of 
that stuff now… 

 

Sebastien Diot: 
Working on a system where “the past CAN be changed”, I might see issues that 
other don’t. That is, things gets messy if “One cannot go back in time to change 
the truthfulness of a piece of data.” doesn’t hold for a particular application. 
 
In my specific case, I work on a payroll system. Almost all data items have a 
value which is associated with a month (some are daily, quarterly, …). Payroll is 
monthly here. Health insurance is obligatory and deducted at the source. The 
problem is, that health insurances are allowed to say that “actually our rates went 
up by 2% 3 months ago!”  
 
So, you are in April, and you have a value for January, but that value now differs 
from what it originally was in January, and then you have to recompute the 
payroll for January to March, and adjust the result of April based on the 



differences found. 
 
In other words, not only our data are timestamped, but an attribute might have 
several values for the same timestamp, entered at different times. That is to 
say, we have data under two-dimensional timestamps. Still makes my head spin 
after working on it for years. 
 
While we’re not a BigData case (our DB vendor likes to remind us of that fact 
regularly; I think they take issues that we use highly effective compression (1/100 
of what a straightforward implementation would produce) on our data by hacking 
their driver), I still have enough experience to say that you neglected an essential 
problem: 
 
How do you get a reliable timestamp? Our experience is that you can NEVER use 
the system clock of your users, because it is often years in the past or the future. 
And as soon as you have more than one server, you can sure as hell be that their 
clocks are going to diverge. Especially so if you had 100s or 1000s of them. So in 
the end, how do you know that data piece A was really created before data piece 
B, if the timestamps are so close that you can’t be sure that it might not actually 
have been the other way around? You can’t either rely on an incrementing 
counter, without using some kind of global lock. 
 
So to resume it, how do you ever get the reliable (and unique) timestamps that 
your theory is based on, in a distributed system where you can neither rely on the 
client or the server clock? 

1. nathanmarz: 
First of all, thanks for the great comment. You bring up a 
lot of good points. 
 
I think that your use case can still be modelled with 
immutable data. Your health insurance rate data should 
say “As of X time, I know the rate to be Y% after Z time”. 
Since your functions take in all the data at once, and you 
have the timeline of events, you can reconstruct at any 
point what payments are supposed to go out. 
 
Getting a reliable timestamp is definitely an interesting 
problem, and it gets more challenging the more fine-
grained you need the accuracy to be. Obviously an 
application that’s allowed to be inaccurate by one minute is 
much easier than one that needs to be accurate to within a 
millisecond. 
There’s a few ways to approach the timestamp problem. 
The first is to have all the machines synchronize their 



times with a reference authority, whether using NTP or 
another solution. This can keep the clocks drifting too 
much, but may run into problems during partitions. As 
long as your required resolution isn’t too small, this should 
work fine.  Another way to approach the problem, and a 
more complex one, is to figure out which partitions of your 
data need total ordering. It’s unlikely that the dataset as a 
whole needs a total ordering. For example, you may need 
a total ordering for each individual person in your system, 
but you don’t need a total ordering across partitions (or at 
least have time resolution requirements that are more 
lax). So you just have to make sure a single machine is 
responsible for timestamping any given entity at a time 
(something that Storm makes easy with “fields 
groupings”). 

 

Ziliang Peng: 
I wonder what’s the difference between create-only-data and write-ahead-log? I 
think the WAL is just another way to append-only update of the data. So it 
appears to me that they are just the same. What’s more, how could you 
synchrounize the new created data to all the nodes? 

1. nathanmarz: 
WAL is a method for updating mutable state on a single server in a 
reliable way. WAL are meant to be compacted once the state has been 
safely updated. What I’m proposing is a rejection of mutable state 
altogether – every data value is first-class and available to queries, not just 
the “latest” one. 

i. Ziliang Peng: 
Well, you are right. They are different. But what I 
mean is that, the implementations of them are just 
very similar. You append something for a write and 
never change it. you could get the current state from 
following the history. 

 

Vladimir Sedach: 
You mentioned MVCC, but MVCC, like your idea (and pretty much most 
distributed systems work) is based on David Reed’s NAMOS system. What 
you’re essentially proposing is NAMOS with a streaming OLAP thrown over it. 
 
The proposed system doesn’t solve or even sidestep the consistency problem at all 
- even if you record transactions as atomic records in this system, you’re still 



going to need a retry mechanism if the timestamp in the database is newer than 
the data you were working with. 
 
All this is proposing is to get rid of the idea of transactions and atomicity. That’s 
why it seems that you’re sidestepping consistency. Mutable state isn’t the problem 
in databases (that’s what MVCC solves), it’s the atomicity. 
 
A whole other issue is that you’re still working with a single database that all the 
data feeds into and views come out of. Your solution is fine for that scenario (as 
long as transactions aren’t needed), but a peer-to-peer distributed system needs 
the vector clocks you mentioned. 
 
Your solution works, but for a limited space of distributed systems (ones that 
have, as you note many times, a consistency time-scale of “a few hours”). It’s 
disingenious to claim that you’ve beaten CAP for all distributed systems 
applications. 

1. nathanmarz: 
Nor do I claim that I’m sidestepping “the consistency problem.” “Beating 
the CAP theorem” does not mean “eliminating it”. It means avoiding or 
mitigating the complexity of dealing with the tradeoff between 
consistency and availability. 
 
Systems based on incremental algorithms and mutable state are difficult to 
reason about, especially once you throw the CAP theorem into the mix. 
Basing a system on immutability and batch computation gives you human 
fault-tolerance and makes it easy to reason about the system. 

i. Paolo Giarrusso: 
I find your approach interesting, also because I’m a functional 
programmer working on something close, but how would your 
system handle two concurrent queries like the following: 
 
INSERT INTO table1(counter, otherField)  
VALUES(SELECT MAX(counter) + 1 from table1, A) 
 
with two different values for A? The goal of this query is that 
counter is a primary key. If the query runs atomically, that’s 
guaranteed. But if I understand your proposal correctly, since you 
do not have atomicity, N queries running at once might add N 
different records with the same counter. So I think this query is 
also related to Vladimir Sedach’s question—but even otherwise, 
I’m curious about your answer.The particular query is pointless, 
but it looks plausible that meaningful atomic queries exist which 
would run into the same problem.On an unrelated topic I was also 
thinking of CouchDB’s immutability, but it seems that the relation 
is quite superficial:http://eclipsesource.com/bl... 



a. nathanmarz: 
What you’re describing is the “traditional way” 
of doing things, where the database represents 
the “current state of the world” and is directly 
mutated. In the approach I propose, you never 
do that. Data are independent facts, and 
something like “count” is a query on those 
facts. For example, if you’re tracking number 
of pageviews, instead of storing a counter that 
you increment, you store the actual pageviews 
themselves. 

 

Kent Beck: 
Nathan, 
I like the direction here. Most data is static, so put it in a store optimized for static 
data. Put the rest in a store optimized for change. Provide a unifying interface to 
both. 
What I don’t understand is how this avoids the problem of inconsistent writes 
during a partition. Even with immutable data, if A and B can’t see each other, 
they can both write new values. Later processing will see both values. What am I 
missing? 
Kent 

1. nathanmarz: 
I’m not 100% sure I understand the question you’re 
asking, so if what I say is unclear or off base it would help 
to see an example of the situation you’re describing. 
 
The key here is the difference between data and queries 
(as I’ve defined them). Data are axioms while queries are 
deductions from data. Each piece of data is a logical fact 
that stands on its own as something true. The right way to 
formulate a data system is such that each piece of data is 
independent from one another. So by definition, a situation 
like you described where there is a dependency between 
individual pieces of data is not possible. 
 
That’s somewhat abstract, so let’s consider a few 
examples. Suppose you want to display the number of 
upvotes on a social news site. The most “axiomatic” way to 
separate the query from the underlying data is to treat 
individual upvotes as separate pieces of data, and 
formulate the “number of upvotes” as a query on that 



data. 
 
Each individual upvote is true independent of the other 
upvotes and so satisfies my definition of data. During a 
partition, you may not see some upvotes, but once the 
partition goes away queries will be correct. 
 
Another example is the one I used in the post about 
updating a person’s location. A person’s location can be 
treated as immutable by tying it to a moment in time. The 
fact that Sally lives in Chicago now does not change the 
fact that she lived in Atlanta 6 months ago. These location 
dataunits are independent. If Sally’s location is written by 
multiple writers during a partition, that’s fine since 
everything is independent. The “current location query” 
would simply take the location with the most recent 
timestamp. 

 

Blake Smith: 
Great post Nathan! This has certainly expanded my view on how I see data and 
the databases that sit on top of it. 
 
I’m curious how the ‘merge’ part of your data fetching works in practice. It seems 
complicated to have code that fetches from both and merges for every data query 
you’re trying to present to the user. Does each data query have to understand how 
to fetch data in both stores and merge them on an individual basis, or do you use 
some sort of abstraction layer that generalizes pulling from both data stores and 
merging the results? I guess what I’m asking is, is a general merge strategy 
possible, or does each query have to know how to merge itself? 

1. nathanmarz: 
The merge strategy usually has something to do with what 
kind of aggregation you’re doing on the data. So a count 
always uses the same merge strategy, for example, by 
splitting the count before and after a certain time and 
adding them together.  An important part of a higher level 
abstraction on top of batch/realtime will be internalizing 
the merge logic within the aggregators so that this stuff is 
automated as much as possible. 

 

 


