
 Radar > Topics > Data

Questioning the Lambda Architecture
The Lambda Architecture has its merits, but alternatives are
worth exploring.

By Jay Kreps
July 2, 2014 • 14 minute read

Nathan Marz wrote a popular blog post describing an idea he called the Lambda Architecture
(“How to beat the CAP theorem“). The Lambda Architecture is an approach to building stream
processing applications on top of MapReduce and Storm or similar systems. This has proven to
be a surprisingly popular idea, with a dedicated website and an upcoming book. Since I’ve been
involved in building out the real-time data processing infrastructure at LinkedIn using Kafka and
Samza, I often get asked about the Lambda Architecture. I thought I would describe my
thoughts and experiences.

What is a Lambda Architecture and how do I become one?

The Lambda Architecture looks something like this:

The way this works is that an immutable sequence of records is captured and fed into a batch
system and a stream processing system in parallel. You implement your transformation logic
twice, once in the batch system and once in the stream processing system. You stitch together
the results from both systems at query time to produce a complete answer.

There are a lot of variations on this, and I’m intentionally simplifying a bit. For example, you can
swap in various similar systems for Kafka, Storm, and Hadoop, and people often use two
different databases to store the output tables, one optimized for real time and the other
optimized for batch updates.

https://www.oreilly.com/
https://www.oreilly.com/
https://www.oreilly.com/radar
https://www.oreilly.com/radar/topics/
https://www.oreilly.com/radar/topics/data/
https://www.oreilly.com/people/jay-kreps/
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html
http://storm.incubator.apache.org/
http://lambda-architecture.net/
http://www.manning.com/marz/
http://kafka.apache.org/
http://samza.incubator.apache.org/


The Lambda Architecture is aimed at applications built around complex asynchronous
transformations that need to run with low latency (say, a few seconds to a few hours). A good
example would be a news recommendation system that needs to crawl various news sources,
process and normalize all the input, and then index, rank, and store it for serving.

I have been involved in building a number of real-time data systems and pipelines at LinkedIn.
Some of these worked in this style, and upon reflection, it is not my favorite approach. I thought
it would be worthwhile to describe what I see as the pros and cons of this architecture, and also
give an alternative I prefer.

What’s good about this?

I like that the Lambda Architecture emphasizes retaining the input data unchanged. I think the
discipline of modeling data transformation as a series of materialized stages from an original
input has a lot of merit. This is one of the things that makes large MapReduce workflows
tractable, as it enables you to debug each stage independently. I think this lesson translates
well to the stream processing domain. I’ve written some of my thoughts about capturing and
transforming immutable data streams here.

I also like that this architecture highlights the problem of reprocessing data. Reprocessing is one
of the key challenges of stream processing but is very often ignored. By “reprocessing,” I mean
processing input data over again to re-derive output. This is a completely obvious but often
ignored requirement. Code will always change. So, if you have code that derives output data
from an input stream, whenever the code changes, you will need to recompute your output to
see the effect of the change.

Why does code change? It might change because your application evolves and you want to
compute new output fields that you didn’t previously need. Or it might change because you
found a bug and need to fix it. Regardless, when it does, you need to regenerate your output. I
have found that many people who attempt to build real-time data processing systems don’t put
much thought into this problem and end-up with a system that simply cannot evolve quickly
because it has no convenient way to handle reprocessing. The Lambda Architecture deserves a
lot of credit for highlighting this problem.

There are a number of other motivations proposed for the Lambda Architecture, but I don’t
think they make much sense. One is that real-time processing is inherently approximate, less
powerful, and more lossy than batch processing. I actually do not think this is true. It is true that
the existing set of stream processing frameworks are less mature than MapReduce, but there
is no reason that a stream processing system can’t give as strong a semantic guarantee as a
batch system.

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying


Another explanation I have heard is that the Lambda Architecture somehow “beats the CAP
theorem” by allowing a mixture of different data systems with different trade-offs. Long story
short, although there are definitely latency/availability trade-offs in stream processing, this is
an architecture for asynchronous processing, so the results being computed are not kept
immediately consistent with the incoming data. The CAP theorem, sadly, remains intact.

And the bad…

The problem with the Lambda Architecture is that maintaining code that needs to produce the
same result in two complex distributed systems is exactly as painful as it seems like it would be.
I don’t think this problem is fixable.

Programming in distributed frameworks like Storm and Hadoop is complex. Inevitably, code
ends up being specifically engineered toward the framework it runs on. The resulting
operational complexity of systems implementing the Lambda Architecture is the one thing that
seems to be universally agreed on by everyone doing it.

Why can’t the stream processing system be improved to handle the full problem set in its target
domain?One proposed approach to fixing this is to have a language or framework that abstracts
over both the real-time and batch framework. You write your code using this higher level
framework and then it “compiles down” to stream processing or MapReduce under the covers.
Summingbird is a framework that does this. This definitely makes things a little better, but I
don’t think it solves the problem.

Ultimately, even if you can avoid coding your application twice, the operational burden of
running and debugging two systems is going to be very high. And any new abstraction can only
provide the features supported by the intersection of the two systems. Worse, committing to
this new uber-framework walls off the rich ecosystem of tools and languages that makes
Hadoop so powerful (Hive, Pig, Crunch, Cascading, Oozie, etc).

By way of analogy, consider the notorious difficulties in making cross-database ORM really
transparent. And consider that this is just a matter of abstracting over very similar systems
providing virtually identical capabilities with a (nearly) standardized interface language. The
problem of abstracting over totally divergent programming paradigms built on top of barely
stable distributed systems is much harder.

We have done this experiment

We have actually been through a number of rounds of this at LinkedIn. We have built various
hybrid-Hadoop architectures and even a domain-specific API that would allow code to be
“transparently” run either in real time or in Hadoop. These approaches worked, but none were
very pleasant or productive. Keeping code written in two different systems perfectly in sync was

http://ferd.ca/beating-the-cap-theorem-checklist.html
http://github.com/twitter/summingbird


really, really hard. The API meant to hide the underlying frameworks proved to be the leakiest
of abstractions. It ended up requiring deep Hadoop knowledge as well as deep knowledge of the
real-time layer — and adding the new requirement that you understand enough about how the
API would translate to these underlying systems whenever you were debugging problems or
trying to reason about performance.

These days, my advice is to use a batch processing framework like MapReduce if you aren’t
latency sensitive, and use a stream processing framework if you are, but not to try to do both at
the same time unless you absolutely must.

So, why the excitement about the Lambda Architecture? I think the reason is because people
increasingly need to build complex, low-latency processing systems. What they have at their
disposal are two things that don’t quite solve their problem: a scalable high-latency batch
system that can process historical data and a low-latency stream processing system that
can’t reprocess results. By duct taping these two things together, they can actually build a
working solution.

In this sense, even though it can be painful, I think the Lambda Architecture solves an important
problem that was otherwise generally ignored. But I don’t think this is a new paradigm or the
future of big data. It is just a temporary state driven by the current limitation of off-the-shelf
tools. I also think there are better alternatives.

An alternative

As someone who designs infrastructure, I think the glaring question is this: why can’t the stream
processing system just be improved to handle the full problem set in its target domain? Why do
you need to glue on another system? Why can’t you do both real-time processing and also
handle the reprocessing when code changes? Stream processing systems already have a notion
of parallelism; why not just handle reprocessing by increasing the parallelism and replaying
history very, very fast? The answer is that you can do this, and I think this it is actually a
reasonable alternative architecture if you are building this type of system today.

When I’ve discussed this with people, they sometimes tell me that stream processing feels
inappropriate for high-throughput processing of historical data. But I think this is an intuition
based mostly on the limitations of systems they have used, which either scale poorly or can’t
save historical data. This leaves them with a sense that a stream processing system is inherently
something that computes results off some ephemeral streams and then throws all the
underlying data away. But there is no reason this should be true. The fundamental abstraction in
stream processing is data flow DAGs, which are exactly the same underlying abstraction in a
traditional data warehouse (a la Volcano) as well as being the fundamental abstraction in the

http://paperhub.s3.amazonaws.com/dace52a42c07f7f8348b08dc2b186061.pdf


MapReduce successor Tez. Stream processing is just a generalization of this data-flow model
that exposes checkpointing of intermediate results and continual output to the end user.

So, how can we do the reprocessing directly from our stream processing job? My preferred
approach is actually stupidly simple:

1. Use Kafka or some other system that will let you retain the full log of the data you want to be
able to reprocess and that allows for multiple subscribers. For example, if you want to
reprocess up to 30 days of data, set your retention in Kafka to 30 days.

2. When you want to do the reprocessing, start a second instance of your stream processing job
that starts processing from the beginning of the retained data, but direct this output data to
a new output table.

3. When the second job has caught up, switch the application to read from the new table.

4. Stop the old version of the job, and delete the old output table.

This architecture looks something like this:

Unlike the Lambda Architecture, in this approach you only do reprocessing when your
processing code changes, and you actually need to recompute your results. And, of course, the
job doing the re-computation is just an improved version of the same code, running on the same
framework, taking the same input data. Naturally, you will want to bump up the parallelism on
your reprocessing job so it completes very quickly.

Maybe we could call this the Kappa Architecture, though it may be too simple of an idea to merit
a Greek letter.

Of course, you can optimize this further. In many cases, you could combine the two output
tables. However, I think there are some benefits to having both for a short period of time. This
allows you to revert back instantaneously to the old logic by just having a button that redirects
the application to the old table. And in cases that are particularly important (your ad targeting
criteria, say), you can control the cut-over with an automatic A/B test or bandit algorithm to
ensure whatever bug fix or code improvement you are rolling out hasn’t accidentally degraded
things in comparison to the prior version.

http://hortonworks.com/hadoop/tez/
http://shop.oreilly.com/product/0636920027393.do


Note that this this doesn’t mean your data can’t go to HDFS; it just means that you don’t run
your reprocessing there. Kafka has good integration with Hadoop, so mirroring any Kafka topic
into HDFS is easy. It is often useful for the output or even intermediate streams from a stream
processing job to be available in Hadoop for analysis in tools like Hive or for use as input for
other, offline data processing flows.

We have documented implementing this approach as well as other variations on reprocessing
architectures using Samza.

Some background

For those less familiar with Kafka, what I just described may not make sense. A quick refresher
will hopefully straighten things out. Kafka maintains ordered logs like this:

A Kafka “topic” is a collection of these logs:

A stream processor consuming this data just maintains an “offset,” which is the log entry
number for the last record it has processed on each of these partitions. So, changing the
consumer’s position to go back and reprocess data is as simple as restarting the job with a
different offset. Adding a second consumer for the same data is just another reader pointing to a
different position in the log.

Kafka supports replication and fault-tolerance, runs on cheap, commodity hardware, and is glad
to store many TBs of data per machine. So, retaining large amounts of data is a perfectly natural

http://samza.incubator.apache.org/learn/documentation/0.7.0/jobs/reprocessing.html


and economical thing to do and won’t hurt performance. LinkedIn keeps more than a petabyte
of Kafka storage online, and a number of applications make good use of this long retention
pattern for exactly this purpose.

Cheap consumers and the ability to retain large amounts of data make adding the second
“reprocessing” job just a matter of firing up a second instance of your code but starting from a
different position in the log.

This design is not an accident. We built Kafka with the intent of using it as a substrate for stream
processing, and we had in mind exactly this model for handling reprocessing data. For the
curious, you can find more information on Kafka here.

Fundamentally, though, there is nothing that ties this idea to Kafka. You could substitute any
system that supports long retention of ordered data (for example HDFS, or some kind of
database). Indeed, a lot of people are familiar with similar patterns that go by the name Event
Sourcing or CQRS. And, of course, the distributed database people will tell you this is just a
slight rebranding of materialized view maintenance, which, as they will gladly remind you, they
figured out a long long time ago, sonny.

Comparison

I know this approach works well using Samza as the stream processing system because we do it
at LinkedIn. But I am not aware of any reason it shouldn’t work equally well in Storm or other
stream processing systems. I’m not familiar enough with Storm to work through the
practicalities, so I’d be glad to hear if others are doing this already. In any case, I think the
general ideas are fairly system independent.

The efficiency and resource trade-offs between the two approaches are somewhat of a wash.
The Lambda Architecture requires running both reprocessing and live processing all the time,
whereas what I have proposed only requires running the second copy of the job when you need
reprocessing. However, my proposal requires temporarily having 2x the storage space in the
output database and requires a database that supports high-volume writes for the re-load. In
both cases, the extra load of the reprocessing would likely average out. If you had many such
jobs, they wouldn’t all reprocess at once, so on a shared cluster with several dozen such jobs
you might budget an extra few percent of capacity for the few jobs that would be actively
reprocessing at any given time.

The real advantage isn’t about efficiency at all, but rather about allowing people to
develop, test, debug, and operate their systems on top of a single processing framework.
So, in cases where simplicity is important, consider this approach as an alternative to the
Lambda Architecture.

https://kafka.apache.org/documentation.html#introduction
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/eaaDev/EventSourcing.html
http://martinfowler.com/bliki/CQRS.html

